A solid with all flat surfaces that enclose a single region of space is called a
\qquad . Each flat surface, or \qquad is a polygon. The line segments where the faces intersect are called \qquad . The point where three or more edges meet is called a \qquad .

Polyhedra can be classified as \qquad or \qquad A prism has two congruent faces called \qquad connected by parallelogram faces. A pyramid has a polygonal base and three or more triangular faces that meet at a common vertex. Polyhedra are named by their bases.

In an \qquad the edges of the faces connecting the bases are not perpendicular to the bases. In a \qquad those edges are perpendicular to the bases.

Euler's Theorem Net
 ($\mathrm{F}+\mathrm{V}-\mathrm{E}=2$)

Faces $=$
Vertices $=$
Edges = \qquad

Faces $=$ \qquad
Vertices = \qquad
Edges =

$\mathrm{SA}=$
$\mathrm{V}=$
$\mathrm{SA}=$
Edges
\qquad
Surface Area and Volume

$\mathrm{V}=$

Pyramid

Faces $=$ \qquad
Vertices $=$ \qquad
Edges = \qquad

$\mathrm{SA}=$
$\mathrm{V}=$

Cylinder

Cone

Sphere

Other solids are a \qquad , which has parallel circular bases connected by a curved surface, a \qquad , which has a circular base connected by a curved surface to a single vertex, or a \qquad .

Oblique pyramid

Oblique cylinder

Oblique cone

